

JS8Call DE KN4CRD
2019-04-01 - v1.0.0 - General Availability

FT8 has taken over the airwaves as the digital communication mode for making QSOs over HF/VHF/UHF. The
mode has been widely popular as the latest offering in K1JT’s WSJT-X application. FT8 is based on the same
foundation as JT65, JT9, and WSPR modes for weak signal communication, but transmits faster with only
slightly reduced sensitivity.

While FT8 is an incredibly robust weak signal mode, it is designed heavily to take advantage of short band
openings on HF/VHF/UHF and only offers a minimal QSO framework. However, many operators are using
these weak signal qualities to make successful QSOs on the HF bands where other modes fail.

JS8Call is an experiment to test the feasibility of a digital mode with the robustness of FT8, combined with a
messaging and network protocol layer for weak signal communication on HF, using a keyboard messaging
style interface. It is not designed for any specific purpose other than connecting amateur radio operators who
are operating under weak signal conditions. JS8Call is heavily inspired by WSJT-X, Fldigi, and FSQCall and
would not exist without the hard work and dedication of the many developers in the amateur radio community.

JS8Call stands on the shoulders of giants...the takeoff angle is better up there.

Read more on the original design inspiration here.

For release announcements and discussion, join the JS8Call mailing list here: https://groups.io/g/js8Call

https://physics.princeton.edu/pulsar/k1jt/wsjtx.html
http://www.w1hkj.com/
http://www.qsl.net/zl1bpu/MFSK/FSQweb.htm
https://github.com/jsherer/ft8call
https://groups.io/g/js8call

History
● July 6, 2017 - The initial idea of using a modification to the FT8 protocol to support long-form QSOs

was developed by Jordan, KN4CRD, and submitted to the WSJT-X mailing list:
https://sourceforge.net/p/wsjt/mailman/message/35931540/

● August 31, 2017 - Jordan, KN4CRD, did a little development and modified WSJT-X to support
long-form QSOs using the existing FT8 protocol:
https://sourceforge.net/p/wsjt/mailman/message/36020051/ He sent a video example to the WSJT-X
group: https://widefido.wistia.com/medias/7bb1uq62ga

● January 8, 2018 - Jordan, KN4CRD, started working on the design of a long-form QSO application built
on top of FT8 with a redesigned interface.

● February 9, 2018 - Jordan, KN4CRD, submitted question to the WSJT-X group to see if there was any
interest in pursuing the idea: https://sourceforge.net/p/wsjt/mailman/message/36221549/

● February 10, 2018 - Jordan KN4CRD, Julian OH8STN, John N0JDS, and the Portable Digital QRP
group did an experiment using FSQ. The idea of FT8Call, combining FT8, long-form QSOs, and
FSQCall like features was born.

● February 11, 2018 - Jordan, KN4CRD, inquired about the idea of integrating long-form messages into
WSJT-X: https://sourceforge.net/p/wsjt/mailman/message/36223372/

● February 12, 2018 - Joe Taylor, K1JT, wrote back:
https://sourceforge.net/p/wsjt/mailman/message/36224507/ saying no and “Please don't let my
comment discourage you from proceeding as you wish, toward something new.”

● March 4, 2018 - Jordan, KN4CRD, published a design document for FT8Call:
https://github.com/jsherer/ft8call

● July 6, 2018 - Version 0.0.1 of FT8Call released to the development group
● July 15, 2018 - Version 0.1 released - a dozen testers
● July 21, 2018 - Version 0.2 released - 75 testers
● July 27, 2018 - Version 0.3 released - 150 testers
● August 12, 2018 - Version 0.4 released - (“leaked” on QRZ) - 500 testers
● September 2, 2018 - Version 0.5 released - 3000 testers
● September 14, 2018 - Version 0.6 released - 5000 testers
● October 8, 2018 - Version 0.7 released - 6000 testers, name changed to JS8 & JS8Call
● October 31, 2018 - Version 0.8 released - ~7000 testers
● November 15, 2018 - Version 0.9 released - ~7500 testers
● November 30, 2018 - Version 0.10 released - ~7800 testers
● December 18, 2018 - Version 0.11 released - ~8200 testers
● January 1, 2019 - Version 0.12 released - ~9000 testers
● January 23, 2019 - Version 0.13 released - ~9250 testers
● February 7, 2019 - Version 0.14 released - ~9600 testers
● February 21, 2019 - Version 1.0.0-RC1 released - ~10000 testers
● March 11, 2019 - Version 1.0.0-RC2 released - >10000 testers
● March 26, 2019 - Version 1.0.0-RC3 released - >11000 testers
● April 1, 2019 - Version 1.0.0 general availability - Public Release!

https://sourceforge.net/p/wsjt/mailman/message/35931540/
https://sourceforge.net/p/wsjt/mailman/message/36020051/
https://widefido.wistia.com/medias/7bb1uq62ga
https://sourceforge.net/p/wsjt/mailman/message/36221549/
https://sourceforge.net/p/wsjt/mailman/message/36223372/
https://sourceforge.net/p/wsjt/mailman/message/36224507/
https://github.com/jsherer/ft8call
https://forums.qrz.com/index.php?threads/a-new-ft8-with-qso-and-rag-chew-capabilities-called-ft8call.623882/

Notice
JS8Call is a derivative of the WSJT-X application, restructured and redesigned for message passing using a
custom FT8 modulation called JS8. It is not supported by nor endorsed by the WSJT-X development group.
While the WSJT-X group maintains copyright over the original work and code, JS8Call is a derivative work
licensed under and in accordance with the terms of the GPLv3 license. The source code modifications are
public and can be found in js8call branch of this repository: https://bitbucket.org/widefido/js8call/

JS8Call is and will always be open-source and free software (free as in beer and free as in speech, do with it
what you like, for sum of exactly $0).

You might be asking...why is this named JS8Call? Why was it renamed from FT8Call? Why not something
else, like BACON or HF Messenger? Good question! It is named this way as an homage to its heritage:

● JS8Call was previously named FT8Call.
● JS8Call uses a custom FT8 modulation called JS8 (Jordan Sherer designed 8-FSK modulation). This is

the base RF transport.
● JS8Call has a “directed calling” protocol laid over top the base RF transport to support free-form and

directed message passing.

Hence JS8 + Directed Calling = JS8Call. And in case you didn’t get that:

● The app is: JS8Call
● The mode is: JS8

Download & Install
JS8Call currently comes in a variety of builds.

● Desktop Linux (64-bit x86_64, deb)
● Desktop Linux (32-bit i386, deb)
● Raspbian Stretch (armv7, deb)
● Windows 10 (win32_64)

○ Windows 10 is the only officially supported Windows build at this time, but the application has
been confirmed to work all the way back to Windows XP.

● Mac OSX 10.11+ (x86_64)

For the most up-to-date download links, first join the groups.io, then check:

● JS8Call Release Announcements
● JS8Call Release Download Links

Of course, you are always free to take a look at the source code as well!

NOTE: Development versions of JS8Call only carry an approximate 14 day lifespan. After expiration, you will
be required to upgrade to the latest version of the application. This helps keep everybody operating with
compatible versions while the software is being developed and beta tested. This expiration does not exist in
general release versions.

https://www.gnu.org/licenses/gpl-3.0.html
https://bitbucket.org/widefido/js8call/
https://groups.io/g/js8call/join
https://groups.io/g/js8call/search?q=%23release&ct=1
https://groups.io/g/js8call/wiki/Download-Links
https://bitbucket.org/widefido/js8call/

Getting Started

Clock Sync / Timing
In the application you can see the current time reported by your PC in UTC format. An accurate clock is
important with JS8Call, as the decoder operates within a 15-second window of transmission (frames). Your
clock being off greater than 2 seconds from UTC can cause messages to not decode at your station. It is best
to use an Internet, NTP or GPS time source for synchronizing your clock as accurately as possible.

JS8Call includes a manual clock drift tool that you can use to modify your application time to match signals
you see / hear (or to an external time source like a Timex watch, a GPS handheld, WWV, or the rooster
crowing). This is intended to be used as a fail-safe for when your synchronized time source is not available
(like if you were out portable, away from cellular or GPS reception).

NOTE: You don’t actually have to have the exact time synchronized...just synchronized to the start of a
15-second window. Many operators can manually synchronize their system clock based on signals in the
waterfall and the time drift reported for each station.

USB - Upper Sideband Only
Make sure your rig is set to upper sideband (USB) mode for every band. If you are running lower sideband
(LSB), you’ll likely see reversed signals you cannot decode.

Duty Cycle
The JS8 modulator is a constant envelope, full-duty modulation that transmits in 12.6 second frames. Because
of the dead air between transmission frames, multi-frame messages can be classified as 84% duty on a
15-second window (12.6 / 15 = 0.84).

Please make note of the power restrictions your transceiver manufacturer recommends for full-duty digital
transmissions. When in doubt, use only a maximum of 50% of your rig’s power output to “save your finals”.

Audio Levels
Your input and output audio levels control how well you transmit and receive. Too high and the audio becomes
distorted. Too low and you have no modulation / demodulation. Calibration is an important step to getting
started.

Output & ALC
A rule of thumb is to set your output audio just high enough to drive your transmitter while not engaging your
ALC. If you drive your audio too high, your ALC will distort the tones and many stations will not be able to
decode your transmissions.

Input & AGC
For best decodes, it’s best to turn off your AGC (or set it to fast) and set your input audio just high enough to
read somewhere around 30-40dB on the signal meter in the app. You might have to experiment with the
settings that work best for your station and you might also have to engage your attenuator for strong signals.

Operating JS8Call
If you’ve used FSQ, Fldigi or WSJT-X before, you’ll feel right at home with JS8Call. The premise is that
JS8Call changes the encoding structure of FT8-style JS8 modulated messages, breaking up long free-text
messages into multiple back-to-back 15-second cycles with 12.6 seconds of transmit time between frames.

Here’s what you’ll see when you start up the application:

Band / Call Activity
Band activity is displayed on the left. Call activity (callsigns you've heard) are on the right. Right clicking will
show a menu with an option to move your RX/TX offset to that audio frequency (QSY) and send specific
messages.

In the Call Activity, when a station responds to you a ★ indicator will be displayed next to their callsign. This
helps you find, at a glance, other operators that are confirmed to be able to hear you.

When a station is calling CQ, a ☎ indicator will be displayed next to their callsign for 5 minutes. This helps you
find, at a glance, other operators that are looking to make contact.

If a station has left you a message, a ⚑ indicator will be displayed next to their callsign. You can read that
message by right clicking on the station and clicking “Show Message Inbox”.

Station distance and azimuth is computed from the first 6 digits of the maidenhead grid locators. This is
enough to present a 2.8 mi / 4.6 km resolution. Closer than this and the distance and azimuth will read 0
distance and 0°.

Waterfall
There is a waterfall at the bottom of the screen to show you the signals in your audio passband. You can click
on the waterfall to set your audio frequency offset.

There is also an option to QSY to that frequency by centering your selected audio offset to the rig passband
center. This allows you to use narrow filters easily.

Messages
The top yellow text box shows you messages that are either on the frequency offset you're on or who have
directed a message to you (they sent a message that included your callsign).

You type into the white box on the bottom to prepare a message for transmission.

Normal FT8 character restrictions do not apply! The extended character set includes all printable uppercase
ASCII (A-Z 0-9 Space ./?+-`~!@#$%^&*()_=[]\{}|;’:”,<>). The message structure is variable encoded, so the
most common characters take the least amount of space, and special characters take longer to send.

As you type your message you’ll see the send button display the number of frames (15 second transmit cycles)
it’ll take to send your complete message. All you have to do is click send (or hit enter) to start transmitting on
the next interval. As each frame is transmitted one after the other, the button will update with the number of
frames left.

Because of this special variable encoding, messages in JS8Call cannot be decoded by WSJT-X. The same is
also true, WSJT-X messages will not be shown in JS8Call.

Messages come in three forms:

1. standard JS8Call free text messages
2. undirected JS8Call messages
3. directed JS8Call messages

Standard Messages
Standard messages are free-text messages that do not start with a callsign or a directed command. These
messages will only print at other station locations if they align their receive offset within 10Hz of your transmit
offset. This is operation similar to other keyboard-to-keyboard digital modes, like Olivia, RTTY, and PSK.

Undirected Messages
Undirected messages are specially formatted JS8Call transmissions that announce your station via CQ or
Heartbeats (HB). They are undirected in that they have no destination.

Directed Messages
Directed messages are special JS8Call transmissions that automatically prefix your message with your
callsign, similar to how FSQCall operates. Directed messages are useful for communicating in that you do not
have to include your callsign in your message, allowing you to use more of the transmission frame(s) for actual

message text, as well as alerting the recipient that a message was sent to them. As long as you are in the
same passband, you do not have to be on the same frequency offset to receive a directed message.

To send a directed message, all you need to do is include the callsign of the receiving station as the first word
in the message or select a callsign in your heard list to have it automatically prefixed.

You’ll notice a special character at the end of the message, ala ⌁. This is called an Electric Arrow, and is a
symbol to indicate the End of Transmission. JS8Call displays this as after the last frame of the message has
been transmitted with nothing else to follow. This means you get a visual indicator that the transmission is
done and you can begin transmitting a reply. It’s also the base character in JS8Call’s icon.

Directed messages to you (and to @ALLCALL) are displayed in the top RX window.
When in the middle of receiving a directed message (i.e., after the first directed frame is received), your station
will not respond automatically to commands (even with AUTO on) until that message is received or enough
time has elapsed to move on (one minute from the last frame decoded).

@ALLCALL Callsign
There is a special “@ALLCALL” group callsign that you can use to send the message to anybody who is able
to receive your message. Some examples:

● @ALLCALL HELLO NET PSE QSY 14300
○ Will be sent as: KN4CRD: @ALLCALL HELLO NET PSE QSY 14300 ⌁

Group Callsigns
Group callsigns are a special form of compound callsigns that begin with an “@” character, and can be up to 8
alpha-numeric (A-Z 0-9) characters in length.. If you modeled that in a regular expression, that would be:

[@][A-Z0-9\/]{0,3}[\/]?[A-Z0-9\/]{0,3}[\/]?[A-Z0-9\/]{0,3}

Group callsign functionality allows you to direct your message to anybody who has “joined” the group. You join
the group by adding the group name in the settings.

Say for example, I was part of the GA ARES group and I wanted to send other folks in the group a message,
I’d send:

KN4CRD: @ARESGA QSL?

This is similar to @ALLCALL, in that everybody who is in the @ARESGA would have the message printed on
the screen.

There are a number of built-in group callsigns you can use that transmit just as efficiently as standard callsigns:

● Any net can use these net groups:
○ @JS8NET
○ @NET

● Continental DX Groups
○ @DX/NA

https://www.compart.com/en/unicode/U+2301

○ @DX/SA
○ @DX/EU
○ @DX/AS
○ @DX/AF
○ @DX/OC
○ @DX/AN

● ITU Regions
○ @REGION/1
○ @REGION/2
○ @REGION/3

● Generic Groups
○ @GROUP/0
○ @GROUP/1
○ @GROUP/2
○ @GROUP/3
○ @GROUP/4
○ @GROUP/5
○ @GROUP/6
○ @GROUP/7
○ @GROUP/8
○ @GROUP/9

● Operator Groups
○ @COMMAND
○ @CONTROL
○ @NTS

Directed Commands:

There are special directed messages that you can send to stations to have them automatically reply if they
have AUTO enabled. They are comprised in the form of [CALLSIGN][COMMAND].

● SNR? - What is my SNR?

● GRID? - What is your grid locator?

● INFO? - What is your station information?

● STATUS? - What is the status of your station (idle time, auto, hb, spot,

version, etc)

● HEARING? - What stations are you HEARING?

● ---

● >[MESSAGE] - Please relay this message to its destination

○ When received in its entirety, the destination station will send an

ACK reply to the message

○ Optionally, this message can be relayed to its final destination

through multiple relay stations by prefixing additional callsigns to

the message:

■ KN4CRD>HELLO!

(will send the message to KN4CRD)

■ KN4CRD>DR4CNK>HELLO!

(will send the message to DR4CNK through KN4CRD)

■ KN4CRD>DR4CNK>J0Y>HELLO!

(will send the message to J0Y through DR4CNK through KN4CRD)

○ Stations will respond to a subset of commands issued through

forwarded messages (SNR, INFO, GRID, MSG, MSG TO:, etc) and will

reply using the relay path provided.

● MSG [MESSAGE] - Please store and display this message in your inbox

○ Your inbox messages can be accessed by right clicking on the callsign

and selecting “View Message Inbox…”

● MSG TO:[CALLSIGN] [MESSAGE] - Please store this message at your station

for later retrieval by [CALLSIGN]

○ Stores a message in persistent storage (on disk) to be retrieved

later using the “QUERY MSGS” command.

○ [CALLSIGN] is the first word after the : and is the final recipient

of the message.

● QUERY CALL [CALLSIGN]? - Can you communicate directly with CALLSIGN?

○ If a station can hear the callsign, they will send back “YES” and

then an ACK to that callsign with an SNR report

● QUERY MSG [ID] - Please deliver the complete message identified by ID

● QUERY MSGS - Please deliver any messages you have stored for me

○ Each response will contain the ID of oldest message yet to be

delivered.

○ To retrieve the message text, issue a QUERY MSG command with the ID

● AGN? - Have the station automatically retransmit their last message

● ---

● SNR - Send signal report

● INFO - Send station information

● GRID - Send a long-form grid locator (to be spotted on a map via

PSKReporter & APRS-IS)

There are also a number of “short messages” that can be included in a directed

message frame, which would be transmitted in one tx cycle with standard

(non-compound, non-group) callsigns:

● QSL? - Did you receive my last transmission?

● QSL - I received your last transmission

● YES - I confirm your last inquiry

● NO - I negative confirm your last inquiry

● HW CPY? - How do you copy?

● RR - Roger. Received. I copy.

● FB - Fine Business

● TU - Thank You

● 73 - I send my Best Regards

● SK - End of Contact

● DIT DIT - End of Contact / Two Bits

Message Examples:

If we wanted to ask DR4CNK what their station information was, we’d send:

● DR4CNK INFO?
○ And they would respond with a directed message back to us: “DR4CNK: KN4CRD INFO 50W

VERT IN THE SOUTH OF FRANCE”, automatically if AUTO reply is enabled.

If we wanted to transmit a “relay” message to OH8STN through DR4CNK, we could use the relay command
and send:

● DR4CNK>OH8STN>HELLO JULIAN!
○ During relay, at each hop the originating sender’s call is appended to the message.
○ The command above would be received by OH8STN, they would send an ACK back, then

retransmit the message, like so:
■ KN4 station sends:

KN4CRD: DR4CNK>OH8STN>HELLO JULIAN!
■ DR4 station relays:

DR4CNK: OH8STN>HELLO JULIAN! DE KN4CRD

You can also mix and match standard and free text messages, but most of the time you won’t need to.

Inbox - Message Storage and Retrieval
Directed messaging allows three commands to be used for message storage and retrieval at intermediate
stations:

● MSG TO:[CALLSIGN] [MESSAGE] - Store this MESSAGE at an intermediate

station for CALLSIGN

● QUERY MSGS - Query the destination for messages stored for your station

callsign

● QUERY MSG [ID] - Query for a specific message stored for your station

callsign

TODO: Let’s add an example here :)

AUTO - Automatic Replies
While AUTO is enabled, the software will automatically respond to directed queries, like “SNR?”, “INFO?”, and
“GRID?”. When AUTO is turned off, JS8Call will buffer responses to directed queries in the send message
textbox until you are ready to send the replies manually.

If you would like to participate in AUTO, but would not like to be responsible for message relays, you can
disable relays while AUTO is enabled in the settings.

LOG - Station Log
There’s a log item in the main menu of the application. You can also press F5 to start a log entry. The software
will do its best effort to pre-populate log fields. However, you’ll likely have to fill out some missing information
manually since the QSO is free-text and not automated.

The log is stored in JS8Call.log & JS8Call.adif in the log directory (which you can find by clicking “File -> Open
log directory” in the main menu).

Currently, the logging function in JS8Call will log each contact, according to the ADIF spec, as MFSK mode and JS8
submode. There is also an option in the Logging settings to log the mode as DATA instead of MFSK & JS8.

Once logged, the selected directed callsign is automatically deselected by default, however this option can be
overridden in the configuration.

SPOT - Callsign Spotting
When SPOT is enabled, JS8Call will report callsigns you hear (or your callsign if heard by other stations) to
PSKReporter under the “JS8Call” mode.

JS8Call will also spot GRID commands with 6 or more characters to APRS-IS / aprs.fi. Make sure to set your
grid locator to 6-12 characters for the most accurate spot. You can drill down with this map to your location if
you’re unsure of your grid: http://k7fry.com/grid/. If you have a lat/lon, you can also use the lonlat2maiden script
here: http://www.jidanni.org/geo/maidenhead/

HB - Heartbeat Transmission
There is an automated heartbeat mechanism that transmits on an interval once turned on (HB button on the
bottom left). This interval can be changed in the settings. Every time you transmit, your heartbeat time is reset.
All heartbeats are transmitted on a random (unused) frequency offset between 500Hz-1000Hz to help prevent
QRM. There is an option in the settings to allow heartbeating anywhere...which is especially useful on lower
bands like 160m and 630m.

When you have AUTO replies enabled and you’ve selected to Send Heartbeat Acknowledgements, your
station will send an ACK reply to signal to the other operator that you can hear them. These are essentially
“lightweight heartbeats” from your station and will reset your heartbeat timer.

The intent of heartbeat is not to report on propagation. Instead it is to help populate your call activity (the heard
list on the right) so you know who's likely to be reachable to make contact. You can't work them if you can't
“hear” them (or if they cannot hear you).

Keep in mind that HBs are not designed to start conversations. When you turn HB on, you’re “joining” the
heartbeat network. This allows for planning of relays and sending messages to be stored at those receiving
stations. Think of HBs and ACKs as a way to plot network topology and relays (">") as a way to send
messages to be read later (sort of like an SMS text message) through that network.

While heartbeating, if a station has a message to deliver to another station it hears heartbeating, it will
announce that in the heartbeat ACK, like so:

KN4CRD: KM4ACK ACK -12 MSG 32 ⌁

https://aprs.fi/
http://k7fry.com/grid/
http://www.jidanni.org/geo/maidenhead/

While in QSO (i.e., when you receive a transmission that is displayed in your incoming messages window) the
HB timer will be reset to prevent your station from QRMing your QSO.

Also, keep in mind that unattended transmissions may be against the rules of your jurisdiction. To be most
safe, heartbeat should only be sent while you’re at the control point of your station. There’s an idle timer that
you can configure in the settings that will disable your heartbeat once you leave your station idle.

CQ - Calling CQ
The default way to call cq is with the “CQCQCQ” message. This is configured by default. What’s notable,
though, is that you can configure this message in the settings. These are the messages supported to be sent in
one 15-second transmission:

● CQCQCQ
● CQ CQ CQ
● CQ CQ
● CQ
● CQ CONTEST
● CQ FIELD
● CQ QRP
● CQ DX

When using one of these message formats, you can also include your 4 digit grid and it will be encoded in one
transmission cycle:

● CQCQCQ EM73
● CQ CQ CQ AA99
● CQ CQ BB88
● CQ CC77
● CQ CONTEST FN04
● CQ FIELD AB01
● CQ QRP JO42
● CQ DX GC28

You can start your CQ message with one of these formats and it will be sent directed, meaning your callsign
will automatically be included. You can also add to the messages without issue:

● CQ QRP 500MW CQ?

If you deviate from these formats, you will not be sending a directed message, your grid will not be included,
and you must include your callsign in your message.

You can also send CQs on an interval by right clicking the CQ button and selecting a repeat interval. This will
cause your station to repeat your CQ transmission until a message is received.

REPLY - Replying to a CQ
The default way to reply to a cq is with “HW CPY?”. This allows the caller to choose who to connect with and
send a signal report to. You can customize this message with a reply, but keep in mind that most stations will
be replying with something that can be send in one 15-second transmission. Here’s an example exchange:

○ →KN4CRD: CQ QRP EM73 ⌁
○ ←DR4CNK: KN4CRD HW CPY? ⌁

○ →KN4CRD: DR4CNK SNR -12 TU 4 CALL QSL? ⌁
○ ←DR4CNK: KN4CRD RR -22 FB INTO GO28 GUD QRP DX! ⌁

Configuration

General (Station and Behavior)
TODO

Radio (CAT and PTT control)
There is an advanced feature for rig control called PTT Command. This allows JS8Call to execute an external
script for controlling a rig’s PTT. The command

Audio (Sound Card)
TODO

Reporting (Spotting and API)
TODO

Frequencies (Calling Frequencies and Band Hopping)
Most operators testing the application can be found +/- 4-8kHz from the standard FT8 frequencies. It is
essential to avoid the main FT8 frequencies, as that will cause confusion among WSJT-X operators. Here are
some suggested frequencies to use:

● 160m: 1.842 MHz // 2kHz above FT8

● 80m: 3.578 MHz // 5kHz above FT8

● 40m: 7.078 MHz // 4kHz above FT8

● 30m: 10.130 MHz // 6kHz below FT8

● 20m: 14.078 MHz // 4kHz above FT8

● 17m: 18.104 MHz // 4kHz above FT8

● 15m: 21.078 MHz // 4kHz above FT8

● 12m: 24.922 MHz // 9kHz above FT8

● 10m: 28.078 MHz // 4kHz above FT8

● 6m: 50.318 MHz // 5kHz above FT8

● 2m: 144.178 MHz // 4kHz above FT8

You might notice a few of these being close to the JT9 frequencies. Don’t grab your pitchforks! JS8Call blocks
out the lower 500Hz of the passband, which is enough room for 25 simultaneous JT9 signals.

You might also notice that there are a few bands missing from this list. JS8Call does not make a
recommendation for calling frequencies on 2200m, 630m, 60m, or higher than 2m, as many are special case
and have unique rules in many jurisdictions. It’s up to the operator to determine the best frequency and
operating pattern on these bands.

But also, please keep in mind these are only suggested frequencies and are subject to change while in
development. We all have VFOs, so please use them. Just remember to be good operators and prevent from
interfering with other signals on our shared bands.

You CAN type into the frequency dropdown list to change to a different frequency. JS8Call will not limit which
frequencies you can transmit on.

You can use the mailing list Sked Chat or the Facebook group to schedule on other frequencies with test
operators.

If you want to transmit on a non-standard frequency (recommended) you can either modify the frequencies list
in the settings, or you can type directly into the band dropdown box in the top left of the screen.

If you’d like to add custom frequencies for JS8Call, you can do so in the settings:

https://groups.io/g/js8call/chat/1422
https://www.facebook.com/groups/PortableDigitalQRP/

If you’d like to reset to the suggested frequencies, right click the frequencies box and click Reset.

Saved Messages (Macros)
There are a few quick saved message buttons for transmitting common messages. You can edit these in the
settings window. Just be mindful that long messages will take a while to send.

Saved messages have macro-like functionality. These are the macros variables (words that are surrounded by
<> characters) that can be used in saved messages which will be replaced when sending the message:

● <MYCALL> - My Callsign

● <MYGRID4> - My 4 digit grid locator

● <MYGRID12> - My extended grid locator up to 12 digits

● <MYINFO> - My station information

● <MYCQ> - My CQ Message

● <MYREPLY> - My Reply Message

● <MYSTATUS> - My Station Status

● <CALL> - Selected Callsign

● <SNR> - The SNR for the Selected Callsign

● <TDELTA> - The time delta for the Selected Callsign

● These macros also apply to configured messages like CQ, Reply, INFO, etc.

Notifications (Sound Alerts)
TODO

UI (Customize Colors and Font)

TODO

Tips & Tricks
● Be a good citizen...if you see a CQ you should try answering it before calling CQ yourself.
● If you hear no CQs, call CQ!

● An example QSO:

○ →KN4CRD: CQCQCQ EM73 ⌁
○ ←DR4CNK: KN4CRD SNR +01 GOOD SIGNAL ⌁

○ →KN4CRD: DR4CNK SNR -12 TU 4 CALL RIG IS KX2 5W DIPOLE ⌁
○ ←DR4CNK: KN4CRD RR -22 FB KX3 100W VERT ⌁
○ →KN4CRD: DR4CNK RR FB REALLY ENJOYING THE CHAT MODE WITH LONG

MESSAGES. BUT HEY LET’S TRY A RELAY ⌁
○ … (and on, and on, if you want)
○ →KN4CRD: DR4CNK 73 ⌁
○ →KN4CRD: @ALLCALL QRZ? ⌁

● You do not need to include your callsign when initiating your directed replies. They will be prefixed to

your message automatically when you have a callsign selected in your heard list.

● You do not have to reply on the same frequency offset as the caller. But, if you’re calling another station
off their frequency, you need to include their callsign at the beginning of the the message so it is
directed to them and will show up in their yellow directed activity window.

● Directed messages pack as much data as standard FT8 frames. The following examples are all 1
transmit cycle long

○ Example:
■ KN4CRD/P: CQCQCQ EM73 (1 transmit frame)
■ VE3/KN4CRD: CQ QRP EM73 (1 transmit frame)
■ KN4CRD: @ALLCALL? (1 transmit frame)
■ DR4CNK: KN4CRD SNR +15 (1 transmit frame)
■ DR4CNK: KN4CRD AGN? (1 transmit frame)

● For replying to a station’s CQ, double click their call in the call activity window, then either choose a

directed command or type a message to them:
○ DR4CNK: KN4CRD HW CPY?
○ DR4CNK: KN4CRD SNR +12
○ DR4CNK: KN4CRD YES
○ DR4CNK: KN4CRD NO
○ DR4CNK: KN4CRD RR
○ DR4CNK: KN4CRD 73
○ DR4CNK: KN4CRD HELLO MY FRIEND GREAT TO HEAR YOU!

● You can send free-text at any time! That’s what JS8Call was inspired by:

○ HI JIM TU 4 CALL UR -12 INTO ATLANTA BTU DE KN4CRD (4 transmit frames)
● It might be helpful to learn some of the morse code prosign/abbreviations and psk31 abbreviations:

○ https://en.wikipedia.org/wiki/Prosigns_for_Morse_code
○ http://www.hamblog.co.uk/common-psk31-abbreviations/
○ Examples:

■ K - over
■ BTU - back to you
■ FB - fine business
■ HW? - how do you copy?

● But, in general, you can just type words and sentences and let the code compress it efficiently.

○ Now, there is a word suggestions feature that marks up your transmission text while you are
typing your message (like a spell check). It will mark words that do not appear in the code
dictionary (often, weird abbreviations), because counterintuitively, using a lot of abbreviations
will often result in LESS efficient transmission.

○ Example:
■ Say we transmit "CONGRATULATIONS AND WELL WISHES FRIEND". This

compresses to 67 bits, for 20 words per minute and 1.76 bits per character (34
characters) in one transmit cycle.

■ But, let's say you want to be clever and use some weird abbreviations to help it transmit
faster... "CNGRATS ES WL WISHS FRND" has 10 fewer characters. but compresses to
122 bits, for 10 words per minute and 5.08 bits per character. That's almost 2x the bits
(and clearly IS 2x the number of transmit cycles)

● JS8Call imposes minimal restrictions on you, the operator. It is up to you and you alone to abide by (or

break) the rules of your license and jurisdiction.

https://en.wikipedia.org/wiki/Prosigns_for_Morse_code
http://www.hamblog.co.uk/common-psk31-abbreviations/

Frequently Asked Questions
● What are the random three (or six) characters at the end of relay and acked message commands?

○ These are a checksum for the message added to ensure all of the message frames were
delivered correctly before retransmitting / alerting. If received in its entirety by the receiving
station, these checksums will not be displayed to them.

● You said that all printable uppercase ASCII characters can be used. Do some take more time to send
than others?

○ Yes. The characters that are sent in the messages are variable encoded, ranging from 3 to 19
bits in length based on their probability of being used in a sentence. The most common
characters take the least amount of space, allowing us to send more than 13 characters per
transmission cycle on average.

○ Example: Space and E are only 2.5 bits in length. You could send about 22 (!!) of them in a
single transmission. Whereas a character like { is more like 14 bits in length, you could only
send 4 of those. (But really, how frequently do you use that character?)

○ Here are some examples of phrases that could be sent in one 15 second transmit cycle:
■ EEEEEEEEEEEEEEEEEEEEEE (22 characters)
■ I HAVE EATEN A SHOE (20 words per minute)
■ WHICH WAY TO OHIO (16 words per minute)
■ NEVER HAVE I EVER (16 words per minute)
■ TU UR 599 4A GA (20 words per minute)
■ Etc

● How fast does JS8Call transmit?

○ JS8Call uses the same 15-second transmission cycle as FT8. What is different is that due to the
variable encoding of the characters, JS8Call can transmit up to 22 characters per transmission
frame. For average sentences, JS8Call can pack words very tightly, at around 15 WPM.

○ Example:
■ "WE HOLD THESE TRUTHS TO BE SELF-EVIDENT THAT ALL MEN ARE CREATED EQUAL THAT

THEY ARE ENDOWED BY THEIR CREATOR WITH CERTAIN UNALIENABLE RIGHTS THAT
AMONG THESE ARE LIFE LIBERTY AND THE PURSUIT OF HAPPINESS"

● This phrase is 35 words. It would take 10 transmission cycles to send (2 minutes 30 seconds).
That is about 14 WPM.

■ “A SUCCESSFUL MAN IS ONE WHO CAN LAY A FIRM FOUNDATION WITH THE BRICKS
OTHERS HAVE THROWN AT HIM”

● This phrase is 19 words. It would take 5 transmission cycles to send (1 minute 15 seconds).
That is just over 15 WPM.

■ “THIS IS A TEST OF JS8”
● This phrase is 6 words and takes 1 transmission cycle to send (15 seconds). That is 24 WPM

○ Morse code has a neat way of calculating WPM, timing how long it takes to transmit the word
PARIS. In JS8Call, PARIS is encoded into 17 bits (3.4 bits/character). Each transmission cycle can
pack up to 69 character bits. That equates to about 16 WPM. (69/17=4.05 words / (15 seconds * 4))

○ The app shows this in the status bar:

● Isn’t 10-20 WPM too slow to have a conversation?
○ If propagation is good enough for a faster mode, you should be using it instead! But, with poor

conditions like we have experienced at solar minimum, JS8Call might just be the best balance.
○ It may seem really slow (and it is, relatively speaking). However, FT8 modulation is able to decode

(theoretically) down to -24dB below the 2500 Hz noise floor. Not many modes can say this,
especially those which transmit at faster speeds. What does this mean? JS8Call may work when
other modes cannot.

○ We believe that communicating slowly is better than not communicating at all.

● What is the JS8Call Relay Challenge?
○ This is a friendly competition to maximize the number of continents one can pass a message back

and forth to using the relay command.
○ We'll be giving away an award (and prize) to the first team of operators to successfully relay a

message from one continent across two other continents (NA, SA, EU, AF, AS, OC, AN) and relay
an ACK back to the original station using JS8Call. All you need to do is submit your logs from each
station and optionally photographic/video documentation of your effort.

○ For example, this is what the outgoing and incoming messages could be:
■ KN4CRD>LB9YH>VK1MIC QSL?
■ VK1MIC>LB9YH>KN4CRD QSL

● Does Heartbeat (HB) mode violate FCC 97.221 Automatically Controlled Digital Station rules in the United

States?
○ For operators in the United States, here’s a reference to the rules: http://www.arrl.org/part-97-text
○ With this, keep in mind:

■ 1) The control operator is responsible for the station operation. The software makes a best
effort to require a human to be present during operation (HB off by default, a watchdog timer
feature built-in, etc). It is up to the operator to make sure they are in compliance with the
rules of their jurisdiction.

http://www.arrl.org/part-97-text

■ 2) Responses to directed queries by non-automatic stations fall under §97.221.C.1
exemption.

○ It is recommended that operators to turn off HB repetition when not at the station control point, but,
they should feel comfortable leaving AUTO on while they are away since their station would only be
responding to queries initiated by a non-automatic station.

● Do message relays (>) violate FCC 97.113.d rules in the United States?
○ For operators in the United States, here’s a reference to the rules: http://www.arrl.org/part-97-text
○ Some background:

■ Repeater stations (definition 40) are stations which re-transmit radio signals simultaneously
on a different frequency.

■ Message forwarding systems (definition 32) are explicitly allowed in FCC 97.219.
○ JS8 message relays do not automatically retransmit radio signals on the same or a different

frequency. Doing so would make the function a repeater. Instead, the JS8Call software cooperates
in a message forwarding system, creating a new message to be forwarded via new radio signals.
These new signals include the original message, a checksum of the message, and the relay path
back to the originating station.

● Why isn't my station responding to @ALLCALL?
○ Previous versions of JS8Call (FT8Call) had a directed message of “@ALLCALL?” that had stations

return SNR reports automatically. This has been replaced, starting in version 0.7 of JS8Call, with HB
and ACKs. Stations will no longer respond to the “@ALLCALL?” query.

○ A similar query can be had by issuing: “@ALLCALL QUERY CALL [callsign]?”

● Why isn’t my station acknowledging (ACK) other heartbeats (HB)?
○ You have to be actively heartbeating with AUTO enabled to ACK other stations. This means, the

order of operations are:

■ Turn on AUTO
■ Right click HB, select your heartbeat interval (keeping in mind that on-demand is not

"actively" heartbeating)
■ When active, the HB button will have a countdown in seconds until the next heartbeat.
■ Your station will now ACK other heartbeats.

● Can I run multiple copies of JS8Call side-by-side?

○ Yes! There is a -r flag you can pass on the command line to give each instance a unique name.
This creates a separate directory for your configuration and log files, so you can run multiple rigs at
the same time.

● I love what you’re doing. Do you have a PayPal or Patreon where I can I send you a donation as a “Thank
you?”

○ I appreciate the gesture! I continue to work on this project as a donation of my time to the
Amateur Radio ecosystem. I’m not looking for payment of any kind. If you feel so obliged,
however, I’d appreciate if instead you sent along any donation you’d like to make to a local
charity of your choosing. Something like the American Red Cross, Salvation Army, or even a
local Amateur Radio club. They’d put that money to far better use!

● What does Joe Taylor, K1JT (or the WSJT-X development team) think of JS8Call?

http://www.arrl.org/part-97-text

○ We have not heard anything from him/them, so you’ll have to reach out and ask!
○ However, as you can see in the History section at the start of the document, I did receive

acknowledgement from Joe before pursuing the JS8Call project back in February 2018:

via https://sourceforge.net/p/wsjt/mailman/message/36224507/

Troubleshooting
If you’re having trouble, head over to the troubleshooting chatroom for help:
https://groups.io/g/JS8Call/chat/1423 or email Jordan directly: kn4crd@gmail.com

Common Problems & Solutions

JS8Call will not run on my system
Make sure you are running a supported operating system, that you have disabled any programs that may be
using your audio device, or preventing JS8Call from using the audio device...like an aggressive antivirus. If
you’re running Windows, and have a Windows Defender running, you’ll need to either whitelist JS8Call or turn
off the defender.

I see signals on the waterfall but I cannot decode them
Make sure the signals you are seeing are actually JS8Call signals and not FT8 signals (they are incompatible)
by ensuring you’re on one of the JS8Call frequencies. Make sure you are in Upper Sideband (USB) mode.
Make sure you have synchronized your clock to within 2 seconds of UTC. Make sure you’re not running
WSJT-X at the same time.

I do not see any signals on the waterfall
Check your incoming audio from your rig. Make sure JS8Call audio is configured correctly. Check to make sure
you’re on one of the JS8Call frequencies. Keep in mind that JS8Call is still in development and has more than
an order of magnitude fewer operators on the air. There may actually be nobody on within your reception
range. Check PSKReporter to see if there are others on the band. If you still cannot see any signals, either:

https://sourceforge.net/p/wsjt/mailman/message/36224507/
https://groups.io/g/ft8call/chat/1423
mailto:kn4crd@gmail.com

1) You have an RX problem with your station
2) None of the operators are operating on the band you are on
3) Or propagation isn’t being friendly to you

NOTE: Keep in mind that JS8Call isn’t magic...we’re still at the mercy of the ionosphere.

My rig won’t transmit
Check your outgoing audio to your rig. Make sure JS8Call audio is configured correctly. Unplug the rig from the
computer and hook up the output to a set of headphones or speakers. Try to transmit, maybe with the TUNE
button in the app. Can you hear the tones? If not, then you have an audio problem, if so then you have a
transceiver problem. Make sure your PTT is configured correctly for your rig or use VOX. You can test this in
the settings. The PTT button will turn green if it can key your transmitter. If you have audio into the rig, but still
have no RF out, make sure your rig is configured correctly by checking your digital gain / tx gain / mic levels.
After that, make sure your rig works...switch over to FM or CW and send a carrier to make sure the rig can
actually transmit at all.

Bug Reports
You can send bug reports to Jordan Sherer (KN4CRD) at kn4crd@gmail.com or in the troubleshooting
chatroom in the groups.io page: https://groups.io/g/JS8Call/chat/1423

There is also an issue tracker here: https://bitbucket.org/widefido/js8call/issues?status=new&status=open

mailto:kn4crd@gmail.com
https://groups.io/g/js8call/chat/1423
https://bitbucket.org/widefido/js8call/issues?status=new&status=open

API Definition
JS8Call uses a JSON API offered over UDP. It is currently highly experimental and subject to drastic change in
the future (like, for instance, if we decide to move it to a HTTP or XMLRPC implementation instead).

The API will allow you to:

● PING - Sent by the app every 15 seconds

● RIG.PTT - Sent by the app when the PTT status changes

● RIG.GET_FREQ - Get the current Frequency

● RIG.SET_FREQ - Set the current Frequency

● STATION.GET_CALLSIGN - Get the current callsign

● STATION.GET_GRID - Get the current grid locator

● STATION.SET_GRID - Set the current grid locator

● STATION.GET_INFO - Get the current station information

● STATION.SET_INFO - Set the current station information

● RX.GET_CALL_ACTIVITY - Get the current heard list

● RX.GET_BAND_ACTIVITY - Get the current activity in the band activity list

● RX.GET_TEXT - Get the text from the yellow rx box

● RX.GET_CALLSIGN_SELECTED - Get the current callsign selected

● RX.SPOT - Callsign, SNR, & Grid was spotted (available in 0.14)

● TX.FRAME - A transmission frame has been prepared (and tones provided)

● TX.GET_TEXT - Get the text in the tx box

● TX.SET_TEXT - Set the text in the tx box

● TX.SEND_MESSAGE - Send a message

● LOG.QSO - QSO has been added to the JS8Call log

● WINDOW.RAISE - Bring the window to the foreground

Technical Implementation
JS8Call is under active development and details about the technical implementation are subject to change.
Detail will be added here as the implementation stabilizes. Until then, the code is the source of truth for the
implementation.

Modulation
JS8Call uses FT8 modulation as the base transport for data. Being a derivative of WSJT-X, JS8Call heavily
leverages the work by the WSJT-X Development Group on the FT8 mode. Very few modifications have been
made (see source code for the exhaustive list) to the base FT8 modulation, with the exception of two important
items:

1. Modifying the costas array algorithm to prevent JS8Call from interfering with FT8 signals
2. And allowing as many of the 75 bits to be utilized for data transport

Protocol
The JS8Call protocol sits at a layer above the base transport. Much of the implementation is inspired by the
design document: https://github.com/jsherer/ft8call with a few deviations from the original proposal.

Messages in JS8Call are transmitted in 15-second intervals (frames), with each frame being classified as one
of 6 frame types:

1. Heartbeat
2. Compound Callsign Partial
3. Compound Callsign Directed Command
4. Directed Command
5. Data Huffman
6. Data Dictionary

Further, each frame includes a transmission flag identifying it as:

1. Default Frame (any frame)
2. First Frame (first frame of the transmission)
3. Last Frame (last frame of the transmission)
4. Flag - Reserved (for future use)

And finally, there are special encodings for:

1. Callsigns
2. Callsign Prefix/Suffixes
3. Signal Reports
4. Grids

https://github.com/jsherer/ft8call

Heartbeat
Heartbeat frames are comprised of:

● Heartbeat Type (Heartbeat or CQ)
● Compound Callsign
● Grid

Compound Callsign Partial
Compound callsign partials are used as one-half of a 2-frame compound transmission when one of the stations
includes a compound callsign. Compound callsign partials are always the 1st frame in a 2-frame compound
transmission, encoding the “from” portion of a directed command with compound callsigns.

The frame includes:

● Callsign
● 4 character alphanumeric prefix or suffix (A-Z 0-9)
● Grid or Numeric Value (SNR or PWR)

Compound Callsign Directed Command
Compound callsign directed commands are a special case for compound callsign partials where the numeric
value encodes a directed command to be used with a compound directed message. It is one-half of a 2-frame
compound transmission. Compound callsign directed commands are always the 2nd frame in a 2-frame
compound transmission, encoding the “to” portion of a directed command with compound callsigns.

The frame includes:

● Callsign
● 4 character alphanumeric prefix or suffix (A-Z 0-9)
● Directed Command

Directed Command
Standard callsigns can send a directed command in one frame.

The frame includes:

● From Callsign
● To Callsign
● Directed Command
● Numeric Value

Data
Data frames are the backbone for long-form messages in JS8Call. They are 75-bit frames that use a variable
encoding to pack character data into the smallest transmission possible.

Data frames come in two flavors:

● Uncompressed: All bits are used for character data using a huffman code
● Compressed: The character data is compressed at the word level using an (s,c)-Dense Code,

Data frames may need to include pad bits because of the variable encoding that character data uses for
packing. The variable encoding used is a modified Huffman code that represents the most common characters
(based on their frequency of observation in most texts) in fewer bits than less common characters, with the
option to shift in alternate alphabets.

The complete modified Huffman code is located in Appendix A. The (s,c)-Dense Code tables include 260K
compressible entities.

Callsigns
Callsigns are encoded in 28-bits as described in: EME 2000 - http://www.ka9q.net/papers/eme-2000.ps.gz
Compound callsigns are a 50-bit encoding of 11 characters following the format:

[@A-Z0-9/][A-Z0-9/][A-Z0-9/][/][A-Z0-9/][A-Z0-9/][A-Z0-9/][/][A-Z0-9/][A-Z0-9/][A-Z0-9/]

Callsign Prefix / Suffix
Prefixes and suffixes are 4 character alphanumeric encoded in 21-bits with a 1-bit flag to indicate whether or
not it is a prefix or suffix. Alphanumeric digits can each be encoded in 5.25 bits (there are only 1,874,161
combinations of 4 character alphanumeric prefix/suffix, which is less than can be represented in a 21-bit
number 221 = 2,097,152)

Grids
Grids are encoded in 15-bits as described in:
http://physics.princeton.edu/pulsar/k1jt/wsjtx-doc/wsjtx-main-1.7.0.html#PROTOCOL_OVERVIEW

http://www.ka9q.net/papers/eme-2000.ps.gz
http://physics.princeton.edu/pulsar/k1jt/wsjtx-doc/wsjtx-main-1.7.0.html#PROTOCOL_OVERVIEW

Future Work
JS8Call is an experiment to test the feasibility of a digital mode with the robustness of FT8, combined with a
messaging and network protocol layer for weak signal communication on HF, using keyboard-to-keyboard style
interface.

There are many opportunities to explore reliable messaging in the future with the foundation laid, including:

● SRARQ - Selective Repeat Automatic Repeat Requests
○ Leveraging automatic frame repeats when lost during transmission
○ Selective repeats would allow for fewer transmissions than the current manual “AGN?”

command.

● Store-and-forward
○ Automatic forwarding of stored messages to get the message “closer” to the destination

● Disruption-tolerant / Delay-tolerant Networking

○ Using epidemic replication to converge a message to its destination automatically through
extremely delayed and disconnected routes

● Automatic Relay Routing
○ Using the network graph to be utilized for smart real-time routing to an intended destination

● Callsign verification

○ Use public key checksumming for verifying the authenticity of the messages passed

● Type-ahead Messaging
○ Ability to start sending a message and type ahead while transmitting.

● And more!

https://en.wikipedia.org/wiki/Selective_Repeat_ARQ
https://en.wikipedia.org/wiki/Store_and_forward
https://www.nasa.gov/content/dtn

Appendix A: Code Table

Huffman Code:
Character code weighted by frequency

 " " "01"

 "E" "100"

 "T" "1101"

 "A" "0011"

 "O" "11111"

 "I" "11100"

 "N" "10111"

 "S" "10100"

 "H" "00011"

 "R" "00000"

 "D" "111011"

 "L" "110011"

 "C" "110001"

 "U" "101101"

 "M" "101011"

 "W" "001011"

 "F" "001001"

 "G" "000101"

 "Y" "000011"

 "P" "1111011"

 "B" "1111001"

 "." "1110100"

 "V" "1100101"

 "K" "1100100"

 "-" "1100001"

 "+" "1100000"

 "?" "1011001"

 "!" "1011000"

"\"" "1010101"

 "X" "1010100"

 "0" "0010101"

 "J" "0010100"

 "1" "0010001"

 "Q" "0010000"

 "2" "0001001"

 "Z" "0001000"

 "3" "0000101"

 "5" "0000100"

 "4" "11110101"

 "9" "11110100"

 "8" "11110001"

 "6" "11110000"

 "7" "11101011"

 "/" "11101010"

(s,c)-Dense Code:
A whitepaper article is being written on this topic. In
the meantime, see jsc.h, jsc.cpp, & jsc_map.cpp in
the source repository for the complete dense code
table.

